Electrolyte-induced Instability of Colloidal Dispersions in Nonpolar Solvents.

نویسندگان

  • Gregory N Smith
  • Samuel D Finlayson
  • Sarah E Rogers
  • Paul Bartlett
  • Julian Eastoe
چکیده

Dispersions of poly(methyl methacrylate) (PMMA) latexes were prepared in a low dielectric, nonpolar solvent (dodecane) both with and without the oil-soluble electrolyte, tetradodecylammonium-tetrakis(3,5-bis(trifluoromethyl)phenyl)borate. For dispersions with a high concentration of background electrolyte, the latexes become colloidally unstable and sediment in a short period of time (<1 h). This is completely reversible upon dilution. Instability of the dispersions is due to an apparent attraction between the colloids, directly observed using optical tweezers by bringing optically trapped particles into close proximity. Simple explanations generally used by colloid scientists to explain loss of stability (charge screening or stabilizer collapse) are insufficient to explain this observation. This unexpected interaction seems, therefore, to be a consequence of the materials that can be dispersed in low dielectric media and is expected to have ramifications for studying colloids in such solvents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulating (electro)hydrodynamic effects in colloidal dispersions: smoothed profile method.

Previously, we have proposed a direct simulation scheme for colloidal dispersions in a Newtonian solvent (Phys. Rev. E 71, 036707 (2005)). An improved formulation called the "Smoothed Profile (SP) method" is presented here in which simultaneous time-marching is used for the host fluid and colloids. The SP method is a direct numerical simulation of particulate flows and provides a coupling schem...

متن کامل

Pattern Formation in Nonaqueous Colloidal Dispersions via Electrohydrodynamic Flow

We describe a new electrohydrodynamic phenomenon observed in inhomogeneous, nonaqueous colloidal dispersions with a spatially varying particle number concentration. In the presence of an external electric field, the dielectric constant and conductivity gradients in these systems engender fluid motion which results in the formation of patterned colloidal structures: columns, disks, and other mor...

متن کامل

Extraction and Dispersion of Large Gold Nanoparticles in Nonpolar Solvents

Gold nanoparticles up to 70 nm in diameter could be extracted from aqueous solutions into nonpolar organic solvents by tetrathiolated resorcinarenes 1 and 2. The resorcinarene-coated nanoparticles formed stable dispersions in toluene and chloroform and could be passed through a crosslinked polystyrene column without significant degradation, but exhibited variable resistance to alkanethiol-induc...

متن کامل

Dispersions of Goethite Nanorods in Aprotic Polar Solvents

Colloidal suspensions of anisotropic nanoparticles can spontaneously self-organize in liquid-crystalline phases beyond some concentration threshold. These phases often respond to electric and magnetic fields. At lower concentrations, usual isotropic liquids are observed but they can display very strong Kerr and Cotton-Mouton effects (i.e., field-induced particle orientation). For many examples ...

متن کامل

Silica dispersions in nonpolar solvent

Hypothesis Silica nanoparticles can be dispersed in organic solvents (organosols) using surfactants, such as didodecyldimethylammonium bromide (DDAB). DDAB analogues prepared with lathanide tetrahalide counterions, either a high-magnetic moment ion (HoCl3Br, DDAH) or low-magnetic moment one (NdCl3Br, DDAN), are expected to produce charged particles but only DDAH-stabilized dispersions are expec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 8 19  شماره 

صفحات  -

تاریخ انتشار 2017